
MATHEMATICS OF COMPUTATION
VOLUME 43, NUMBER 168
OCTOBER 1984, PAGES 501-528

Accurate Computation of Divided Differences
of the Exponential Function

By A. McCurdy, K. C. Ng and B. N. Parlettl

Abstract. The traditional recurrence for the computation of exponential divided differences,
along with a new method based on the properties of the exponential function, are studied in
detail in this paper. Our results show that it is possible to combine these two methods to
compute exponential divided differences accurately. A hybrid algorithm is presented for
which our error bound grows quite slowly with the order of the divided difference.

Introduction. We need accurate divided differences for computing certain func-
tions of matrices f(A) by means of the Newton interpolating polynomial (cf. Section

6): n-I k

f(A) = Alf I + E k Af I(A - xI),
kl j=l k=1

where Ak stand for the divided differences of f on the eigenvalues of A. One can
evaluate f(A) by computing first the divided differences and then accumulating the
polynomial. The divided differences must be of high relative accuracy because they
are the coefficients of products of matrices which, in some cases, have very large
norms. What makes such accuracy possible is that the divided differences are not for
arbitrary smooth functions f but for well-known analytic functions such as exp, sin
and cos. Thus we can exploit their properties in the computation.

In this paper we restrict our attention to exponential divided differences. A new
technique, namely argument reduction for matrix exponentials, makes it realistic to
consider data sets with imaginary parts bounded by ST in magnitude. Based on this
an algorithm is presented for which our error bound grows quite slowly with the
order of the divided difference.

We begin by collecting together a considerable amount of information on divided
differences and we hope that there will be other applications for accurate divided
differences of well-known functions.

1. Basic Notation and Theorems.
1.1. Definition of Divided Difference. Following McCurdy [7], we will use an

uncommon but compact notation for divided difference. For completeness and
simplicity we use the contour integral representation to define the divided dif-
ferences. Our attention will be on the basic properties (1.2.1), (1.2.2) and (1.2.3)
given in Subsection 1.2.

Received September 14, 1983; revised January 30, 1984.
1980 Mathematics Subject Classification. Primary 39-04; Secondary 33A10, 65D20.
1 The authors gratefully acknowledge support by the Office of Naval Research Contract N00014-76-C-

0013.
3?1984 American Mathematical Society

0025-5718/84 $1.00 + $.25 per page

501

502 A. McCURDY, K. C. NG AND B. N. PARLETT

Let f be a holomorphic function defined inside and on a simple closed contour C
enclosing the sequence Z 7 [M, 21 ... I nI ...] of complex numbers. Z denotes the
abscissae (or, for those who do not like Latin, data points or nodes, or even knots).
We use Ak?f to denote the k th order divided difference of f on tj, j? 1,... i+k. For
any integer i > 0, the kth order divided difference A'kf on Z is defined (following
Gel'fand) to be

(1.1.1) A'kf = 'k(Z)f=
f

((4

d
-

i I
~27Ti (c (6 Oi(W ,i+J.. (@ ,k

The superscript of A&kf denotes the order and the subscript denotes the starting
point in Z. Reference to the abscissae Z is usually suppressed.

Remark 1. An alternative, and more elementary definition (used in Conte and
de Boor [2, cf. p. 40] designates Akif as the coefficient of xk in the unique
polynomial of minimal degree which interpolatesf at , j + 1,. . ., Di+k.

Remark 2. Milne-Thomson [13] writes Akf as [j, ?i+1,... i+k]' suppressing the
function while de Boor considers [1i, i+1... . ,i+k] as a linear functional whose
value on f is written Wti, ti+D... ,di+X. Davis [3] usesf [kk(.i' ,i+?1..' .*i+k); some
others like Atkinson [1] use f t,i ,i+l,... 'Di+k] while Kahan and Farkas [6] and
Gabel [4] use Af(Gi. ti+l.... **i+k) which suggested the compact notation used here.
Much of this introductory section is taken from the thesis of McCurdy [7].

1.2. Basic Properties of Divided Differences. Let f (k) denote the k th derivative of f.
From basic complex analysis one can deduce from (1.1.1) that

(1.2.1) A'kf does not depend on the order of ji, ti?+ 1 'i+k in Z,
(1.2.2) if i + ti?k' then Akf = (Ak-lf - Ak-lf)/(t -

(1.2.3) if tj = tj+ = = i then Akf = f (k)(tj)/kk! in particular AOf=

Most definitions for divided difference are based on (1.2.1), (1.2.2) and (1.2.3).
Thus our definition agrees with them when the function is holomorphic. In this
paper f will be holomorphic.

1.3. Integral Representation.
THEOREM (HERMITE-GENOCCHI).

(1.3.1) Akf =f f1 ... fVk-1

f(k) [i +(?i+1
_

ti)Pi + * (i- ik i+k-1)Vk] dvk ... dV2dVj.

Proof. See Gel'fand [5].

COROLLARY.

(1.3.2) 1A !maxIf (k) (()I

where Q is the convex hull of t * , k

1.4. Mean Value Representation. For real abscissae, (1.3.1) implies that there exists
some , E Q such that

(1.4.1) Akf = if (k) ()

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 503

One might hope to generalize this representation for complex abscissae by requiring
X to lie in the convex hull of the abscissae, but this will not suffice, as is easily seen
by the following example:

Example I. tl = 1, t2 = 2,f()-) exp(2vi?),

e4fi e2fi

(1.4.2) Alf = 2 - o (f)

for any finite .
In the above example, if we require both abscissae to lie in f 's fundamental domain

(t: Re(t) E [2 , 2) } (note that f(t + n) = f(t) for any integer n), then the best we
can have is that there is some q close to their convex hull for which (1.4.1) holds. The
next example illustrates this property.

Example II. tl = t, t2 = -t, t is a small nonzero real number,

(1.4.3) Alff = 2t =

for any real .

1.5. Matrix Representation. The traditional way of computing Ak f uses the divided
difference table. Each divided difference is computed from its two immediate
neighbors in the column to its left (use (1.2.3) for coincident abscissae and (1.2.2) for
the rest).

f11
t1

f(tAl

'2 f(t2)

A12f *~~~ 2

n-lf

n- if

];n f (Jn)

For our purposes it is more helpful to arrange the table as an upper triangular
matrix, for example

A (;l f
.. A ** n-lf

(1 .5 .1) Af- A~f (.;) - - n-2f..

The symbol Af = A(Z)f, without the superscript and subscript, is used here to
represent a matrix, not a scalar. Let Zn be the special n x n bidiagonal matrix
associated with the ordered set Z

(2 1

(1.5.2) Zn-

504 A. McCURDY, K. C. NG AND B. N. PARLETT

THEOREM (OPITZ). The divided difference table is a matrix function

(1 .5.3) '&f =f (Zn)-

Proof. See McCurdy [7] or Opitz [10].
Remark. Opitz [10] first obtained the result but his paper is little known in the

U.S.A. and is in Gerinan. McCurdy rediscovered it in 1979 when working on his
thesis.

1.6. Our Objective. Given any Z = [11, .21... ,], can we compute 4J1expfor
k = 0, 1, .. , n - 1 with guaranteed high relative accuracy? Using the matrix repre-
sentation, it is equivalent to ask "Can we compute the first row of A exp, or
exp(Zn), accurately?" The answer is affirmative if the abscissae are close to the real
line.

In the next two sections, we discuss some basic and hybrid methods for computing
A exp. In Section 4 we give the results of McCurdy [7] for real abscissae Z, which
show that one can compute A exp accurately in all circumstances. We turn to the
complex case in Section 5 and show that in certain cases the problem is "difficult"
(to be precise, certain sets Z give unexpectedly small values for Ak exp, and we call
them "difficult"). For difficult Z, we cannot expect high relative accuracy; the
situation is like approximating zero by some nonzero number. Finally, in Section 6,
we discuss the application of the divided differences to matrix exponentials.

2. Basic Methods for Computing Exponential Divided Differences.
2.1. Standard Recurrence. When all ?'s in Z are distinct, we can use the

well-known recurrence scheme (1.2.2) to compute the divided differences table Af:
A&kffor i > 0, k > 0 and k + i < n.

SR (Standard Recurrence scheme).2
(2.1.1) A' Afk-l f - &k-l f

ti+k -i

for each k = 1,2,... ,n and i = 1,2,.. .,n - k, where A ff(ti). E1

SR is probably the simplest algorithm. It takes only n2/2 + O(n) arithmetic
operations to fill up the whole of Af when all data in Z are distinct. However, when
some f(ti) are close together and given to limited precision, it may produce
enormous relative error. For example, consider the exponential function on data
[1, 1.0001]. Assume function values given to 8 decimal digits, then

A1 exp = 2.7185537 - 2.7182818 = 2.7190000 (Ans. 2.718417747 ...) 1 ~~1.0001 - 1

Four digits have been lost during the subtraction (which is performed exactly!).
Notice that the loss does not depend on the number of digits carried by the function
values. The first four digits of the function values agree, therefore four digits will be
lost no matter how many digits are given. Since the higher order differences of exp
behave like exp (because the derivative of exp is exp), we would expect A&n exp to

2Parlett's Recurrence for computingf(Z,) (Parlett [11]) is identical to the standard iterative scheme for
computing Af. The technique is based on the commutativity of Zn and f (Zn): Zn ' f(Zn) = f(Zn) ' Z,
cf. Parlett [11].

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 505

lose 4n digits if the data are as close together as in the example. Consequently, when
only 12 or 16 decimals are available it is quite possible to lose them all for higher
divided differences!

If the tabular values are the only data then there is no simple escape from this loss
of information. That is why divided differences have a bad name in practice.
However, in a number of applications the functional form of f is known (e.g. exp)
and can be exploited to obtain accurate values in this situation. This is the essential
point of our paper.

We shall suppress the reference to exp or Z in the exponential divided differences
when it can be done without ambiguity. Thus Akg, Ak(Z) and Ak'exp may all mean
Ak'(Z) exp.

2.2. Special Formula for The First Divided Difference. If the sine function for
complex arguments is available and fully accurate then we have a reliable formula
for the first divided difference. Let w (gi+ + gi)/2 and 4 (j + - g)/2, then

eii+' - ee i =e e. - e- =e sinh(4) - e* sin(i4i)

If p = O,wesetAl = et.

Function FDD(x, y) (First Divided Difference). Given complex data x, y, FDD
will return the value of Al ([x, y]).

1. X = (y + x)/2,
2. p =X - x,
3. if 0 = Othen FDD = ex,

4. if 0 # 0 then FDD = e - sin(i4,)/(i4,).
5. Return. 0

2.3. Taylor Series. Another simple way to compute A is by its Taylor series

A Aexp = exp(Z)=I+ Zn+ Z /2! +

Because of the special structure of Z, there is an extremely elegant algorithm for the
first row of the matrix A. Explanation is given in Appendix A of [8]. This approach
does not apply when f is known only by its values on Z.

Algorithm TS (Taylor Series). Given Z as in Subsection 2.1, this algorithm
computes [d(1), d(2),.. .,d(n)]:= . An. ., A-l1] by Taylor series. In what follows,
k indicates the current loop number, and s(i) stores the (1, i)th element of matrix

(Zn)k?i- /(k + i - 1)!
TS 1. [Initialize]. Set d(i) = s(i) = 1/(i - 1)! for i = 1,2,... ,n.
TS 2. [Loop.] For k = 1, 2, ... until convergence do

TS 2.1 s(l) D- s(1)/k
TS 2.2 For i2, 3,... ,n do

s(i) <-[tj s(i) + s(i -1)]/(k + i -1),
d(i) +- d(i) + s(i).

TS 3. Set d(l) = exp(t,) and the algorithm terminates. O

Algorithm TS computes only the first row of A. If one wants the whole divided
differences table, one has to use the following TS(II), which essentially computes the
whole A by repeating TS on the submatrices in Z-

506 A. McCURDY, K. C. NG AND B. N. PARLETT

Algorithm TS(II) (Taylor Series Algorithm (II)). Given Z and a matrix array F,
this algorithm computes F = A by Taylor series. In what follows, k indicates the
current loop number, and F(i, m), i > m, stores the (i, m)th element of matrix

(Zn)k?im/(k + i - m)!.
TS (II) 1. [Initialize.] Set F(i, m) = F(m, i) = 1/(i - m)! for 1 < m < i s n.
TS (11) 2. [Loop.] For k = 1, 2,... until convergence do

TS (II) 2.1. For m = 1, 2 ..., n-1 do
F(m, m) <- * F(m, m)/k,
for i = m + 1,...,n do

F(i, m) -j[
- F(i, m) + F(i - 1, m)]/(k + i - m),

F(m, i) < F(m, i) + F(i, m).
TS (II) 3. For m = 1,2,... ,n set F(m, m) = exp(jm) and restore zero to the

lower parts of F, i.e., F(i, m) +- 0 for 0 < m < i, and the algorithm terminates. El

Accuracy. TS method is fast and accurate only when all tj are close to zero. Let
y-- maxgezIlj and call it the "radius" of Z. Numerical examples show that when
the radius is bigger than 2 or 3, TS may not be reliable. The situation is like
computing e -Y by its Taylor series, i.e., by 1 - y + y 2/2! + * -. In finite precision
arithmetic, when y is large, e - e is small and the roundoff error from the intermediate
term ykIk! (which is large) could impair the accuracy of the series. If one wants the
roundoff of the intermediate terms to have no serious effect on e-7, say, confined to
the last binary digit of e -7Y, then y must be small enough so that e - > 2-
maxk(Qy/k!), which implies y < ln 2 - 0.7. It seems reasonable to require y < 0.7 if
one- wants TS to yield accurate answers.

Criterion. Use TS when y is less than 0.7. This criterion will be used throughout
our paper, for we need TS to yield accurate answers in the Scaling and Squaring
method in Subsection 2.4. One may relax the constant 0.7 a little bit but we will stick
to this value. Our examples (cf. Table 2.3.3) show that the error grows rapidly with y
and it becomes unbearable when y is bigger than 2 or 3.

Remark. The number of terms I needed in the series depends on the radius y and
the machine precison e. In Appendix A of [8] we show that in the presence of
roundoff it is sufficient to choose 1 such that

00

(2.3.1) <

For example, if y = 0.7, then for e = 2-24, 1 = 9 and for e = 2-56, 1 = 16.
Operation Count and Storage. The operation count is 2 In for TS and In2 for

TS(II), where / is the number of terms needed. Two working n-vectors are required
for storing d and s in TS while a whole matrix is needed in TS(II).

Numerical Example. Let u = cos(0.1) + i sin(0.1). We ran TS on a Vax 11/7803
using single precision (e = 2 -24) on the set

(2.3.2) Z =4 [-yu,-yU,. ..,-yU,yu, ... -,yu]

3Vax is a trademark of the Digital Equipment Corporation.
4To be precise, if Z has n points, then the first [(n + 1)/2] are -y u and the others are yu.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 507

TABLE (2.3.3)

Max relative error coefficient in Z (cf. 2.3.2) with different n andy.

n = 5 n = 11 n = 17 n = 23 n = 29

y = 0.7 1.3 2.3 1.9 4.0 2.7
y= 1.2 1.9 4.9 8.8 8.8 8.8
y= 1.7 3.8 7.9 14.5 10.6 30.7
y= 2.2 38.7 38.7 38.7 38.7 38.7
y= 2.7 39.0 59.7 122.0 122.0 122.0
y= 3.2 26.7 96.1 133.0 159.0 159.0
y= 3.7 291.0 321.0 321.0 484.0 484.0
y= 4.2 704.0 1820.0 1820.0 1970.0 1970.0
y = 4.7 2250.0 2250.0 2300.0 2300.0 2980.0
y= 5.2 2980.0 5530.0 8240.0 8240.0 8240.0

with different values of -y and n, where n is the number of points in Z. Here y is also
the radius of the data because Iu = 1. Our results are summarized in the above
table. Each entry in Table (2.3.3) is the maximum magnitude of the relative errors in
A(Z) as a multiple of _.5 Note the rapid growth of the error as y increases.

2.4. Scaling and Squaring. Scaling and squaring is a general technique for
computing the matrix exponential (see Ward [12]). It makes use of the functional
properties of the exponential function. Since the divided difference table can be
regarded as the exponential of Zn, we can apply this technique to Zn in order to
compute A.

2.4.1. SS (Scaling and Squaring) Method. When the abscissae are not close enough
for TS, we can shift and scale down the size of Zn by, for example, setting

Yn =2 (Zn -),

where k and q are chosen so that Yn has small diagonal elements. Since exp has the
following properties:

(i) exp(A + xI) = ex * exp(A),
(ii) exp(A/2k)2k = exp(A),

we can recover exp(Zn) from F = exp(Yn) by exp(Zn) = en [exp(Yn)]2k. The matrix
power F2 can be computed by repeated squaring of F (i.e., F +-F 2) k times.

Four Major Steps for SS:
Step 1. Determine6 q and k so that Yn = (Zn - qI)/2k has radius < 0.7.7
Step 2. Compute F = exp(Yn) by Taylor series.
Step 3. (F +- F2) k times.
Step 4. Shift back F: F +- e7 F.

The squaring in Step 3 normally requires kn 3/6 + n 2/2 + n/3 operations (F is
triangular) and a matrix storage for F; this is quite expensive when n is large.

5 Thus the number 8240 corresponding to n = 29 and -y = 5.2 means that the maximum relative error in
At(Z) is 8240.

6We usually use the arithmetic mean of the data as the shift.
7The number 0.7 comes from the criterion in Subsection 2.3. It is proved to be almost the best for SS in

McCurdy [7] when Z is real.

508 A. McCURDY, K. C. NG AND B. N. PARLETT

However, there is an alternative method which requires only kn2 + 0(1) operations:
with some modification of Steps 2 and 3, one can replace every "intermediate" F by
some divided differences table. (Notice that in Step 2

= 2=k1 22 ~ n
2n k . 2 - k

- kD

and does not generate a divided differences table.) Consequently with the backfilling
technique in Subsection 2.4.2, one can generate the whole matrix F from its first row
and therefore only the first row is needed in the squaring, thus reducing the
operations and storage required. This method does sacrifice some accuracy, however.
Before presenting the algorithms (in Subsection 2.4.4), we describe the backfilling
technique and discuss a subtle modification of Steps 2 and 3. In general we cannot
avoid using a 2-dimensional array to form F2 unless F has some special structure.

2.4.2. Backfilling the Divided Difference Table. Consider again the divided
difference table Af

f() A I1 f *
n

** I-f

Af- f (D2) 2 n-2f. Af~

f (gJ

Algorithm SR shows that Af can be generated from its diagonal elements. However,
it is also true that Af can be generated from its first row by the formula (1.2.2): given

(2.4.2.1) Akf= (gi?k - ti-1) * &ki+4f + Ak_ilf

for i = 2,3,...,n and k = O, 1, 2,... ,n - i.
The only worry in using formula (2.4.2.1) is the propagation of the error in Akf,

which may be serious, especially when the D 's are far apart. When f = exp and Z is
real and in natural order (i, < Dj for i < j), (2.4.2.1) is reliable because all A&kexp
and (Gi + k - -) are positive, and summing positive numbers is quite stable. Thus
bad situations occur only when Z has large variation in the imaginary parts. In this
case the backfilling step frequently exhibits instability. The following is a typical
example.

Numerical Example. Let Z = [-24i, -21i, -18i, ... ,18i, 21i, 24i]. We compute the
last column of A(Z): An-k for k = 1,2,...,18 by backfilling and compare it with
the correct answer (in Table 2.4.2.2). The last column of the table denotes the
magnitude of the relative errors in the corresponding divided difference An-k.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 509

TABLE (2.4.2.2)

Backfilling yields enormous error for Z with
a large variation in the imaginary parts.

k Correct values Backfilling rel. error
to six digits

1 (.699024e - 16 .OOOOOOe + 00) (.699024e - 16 .OOOOOOe - 00) .21e - 07
2 (.118971e - 15 .167766e - 14) (.118971e - 15 .167766e - 14) .le - 07

3 (-.375574e - 13 .535368e - 14) (-.375574e - 13 .535368e - 14) .21e - 07

4 (-.168358e - 12 -.780734e - 12) (-.168358e - 12 -780734e - 12) .15e - 06

5 (.149915e - 10 -.436262e - 11) (.149915e - 10 -.436262e - 11) .52e - 06

6 (.976633e - 10 .264278e - 09) (.976634e - 10 .264279e - 09) .20e - 05
7 (-.424631e - 08 .192067e - 08) (-.424635e - 08 .192068e - 08) .72e - 05
8 (-.333270e - 07 -.616516e - 07) (-.333270e - 07 -.616534e - 07) .26e - 04

9 (.800392e - 06 -.508937e - 06) (.800473e - 06 -.508930e - 06) .86e - 04

10 (.678836e - 05 .917160e - 05) (.678798e - 05 .917475e - 05) .28e - 03

11 (-.912472e - 04 .781070e - 04) (-.913509e - 04 .780928e - 04) .87e - 03

12 (-.761200e - 03 -.771374e - 03) (-.760814e - 03 -.774224e - 03) .27e - 02

13 (.538045e - 02 -.611926e - 02) (.544411e - 02 -.611179e - 02) .79e - 02

14 (.390049e - 01 .296790e - 01) (.389112e - 01 .307910e - 01) .23e - 01

15 (-.121109 .184993) (-.135378 .184486) .65e - 01
16 (-580745 -.323969) (-.584346 -.443728) .18

2.4.3. Modification of Step 2 and Step 3. We may assume the data have been
shifted to have mean 0. For 0 < i < k, define the bidiagonal matrix Z(') to be

2-1D

Z(1)= 2-TD2 1

Also let the diagonal matrix R be

R= 22 1
*2n-1

Our objective here is to replace every intermediate "F" in Steps 2 and 3 by
exp(Z(')), so that we can apply the backfilling technique and avoid the storage for a
whole matrix.

Modified Step 2. Compute Fo = exp(Znk)) by TS.
Modified Step 3. Compute Fi = RF2 -RI for i = 1,R2,.. ,k.

LEMMA. F, = exp(Z(k-l)) for 0 < i < k, in particular, Fk = exp(Z(o)) = exp(Zn).

Proof. Assume F1 = exp(Znk -)) for some 1 > 0, then

Fl = RF12R-1 = R[exp(Znk -)) 2R-1 = R - exp(2Znk-l)) *R1

- exp(2RZk-)Rl).

510 A. McCURDY, K. C. NG AND B. N. PARLETT

From the definition, it may be verified that Z,(' - 2RZ,('j)R-1 forj > 0. Hence,
F+1 = exp(Z(k-l-1)). The lemma holds when 1= 0. By induction, we have Fi =

exp(Z(k-i)) for i> 0. El
Since every intermediate "F" is of form exp(Zn()), each of them is a divided

difference table (with different scaled abscissae). By the previous section, F can be
generated from its first row. Hence it is possible to do the squaring (for the first row)
without keeping the whole matrix.

2.4.4. Algorithm for SS.

Algorithm SS (Scaling and Squaring). Given Z as in Subsection 2.2, this algorithm
computes [d(1), . . ,d(n)]:= [O, All, ..,An--] by scaling and squaring. In what
follows, vector s stores the current column of F and vector r stores the first row of
the current F.

SS1. [n = 1?] If n = 1, return d(1) = et' and the algorithm terminates.
SS2. [Shifting.] Set q = (EX :)/n and replace tj by i - q.
SS3. [Scaling.] Determine the least integer k > 0 such that 2 kmaxIi Ij < 0.7, then

replace ti by 2- kti for all i.
SS4. [TS.] Call TS with Z equal to the current t 's, result goes to d.
SS5. [Squaring.] For kk = 1, 2, ... ,k do

SS5.1 Set s(l) = d(1), for i = 2, 3,. .. ,n do
SS5.1.1 [Backfill the ith column of F in s.]

x = s(l)
s(1) = d(i)
Forj= 2,...,i-1 do

y= s(i)
s(j) = x + (Gi - tj_1)sf j - 1)
x = y
next j

s(i) = exp(ti).
SS5.1.2 [form the (1, i)th element of RF2R-1.]

r(i) = 2-('-1)E'.1d j)s(j).

SS5.2. [Update d and tj's.]
d(i) -r(i) for i = 2,...,n,

ti + 2ti for i = 1, 2, .. .,n
d(1) = exp(t,).

SS6. [Backfill the last column of F.] Set s(l) = d(l), for i = 2, 3,. . ., n do
x = s(l)
s(1) = d(i)
For j = 2,.. .,i- do

y = s(])
s(j) = x + (Gi - tJ_1)s(- 1)
x = j
next]

nexti.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 511

SS7. [Shift back and stop.]

ti +- i + -q, d(i) et' - d(i), s(i -1) -et' - s(i -1) for i=
2,...,n, set d(l) = exp(D,) and s(n) = exp(gn) and the algorithm
terminates. O

Remarks. (1) If the function FDD (cf. Subsection 2.2) for the first divided
difference is available, one can improve the accuracy of SS by using FDD whenever
the first divided difference is wanted.

(2) SS6 is necessary for the Simple Hybrid Algorithm in the next section,
ortherwise it is not needed.

The backfilling step may not always be reliable: when Z has a large variation in its
imaginary parts it is likely that formula (2.4.2.1) will magnify inherited errors. In
that case straightforward squaring is needed. Here is the algorithm.

Algorithm SS(II) (Scaling and Squaring Algorithm (II)). Given Z and matrix F,
this algorithm computes F= A by scaling and squaring. For the R in step 5.1, cf.
Subsection 2.4.3.

SS(II) 1. [n = 1?] If n = 1, return F(1, 1) = eti and the algorithm terminates.
SS(II) 2. [Shifting.] Set q = (E p1)/n and replace Z by Z - .
SS(II) 3. [Scaling.] Determine the least integer k > 0 such that 2kmaxiIJJI < 0.7,

then replace Z by 2- kZ.

SS(II) 4. [TS(II).] Call TS(II) with data Z, result goes to F.
SS(II) 5. [Squaring.] For kk = 1, 2,. . ., k do

SS(II) 5.1. [Update F.] F = R - F2 * R-1.
SS(II) 5.2. [Update ni's.] Z +- 2- Z.
SS(II) 5.3. [Update F(i, i).] F(i, i) = exp(D') for i = 1, 2,. .. ,n.

SS(II)6. [Shift back and stop.] Z <- Z + r,, F - et' - F and the algorithm
terminates. El

Operation Count and Storage. The major part of this computation is the squaring
step, which is repeated k times. The operation count for each squaring is n2 + 0(1)
in SS5 and n3/6 - n 2/2 + 0(n) in SS(II) 5 (with n function call on exp). Hence the
total operations needed are - kn2 in SS and = kn3/6 in SS(II), where k is the least
nonnegative integer such that 2-ky < 0.7.8 Therefore when y > 0.7, k =
[log2(y/0.7) + 1]= log2 y + 1.5.9 Four n-vectors are needed for storing d, s, r and
Z in SS while a whole matrix is needed in SS(II).

Accuracy. Both SS and SS(II) may be viewed as extensions of TS (Taylor Series).
They can accept moderately spread data without suffering as much as TS (cf.
Subsection 4.3). The choice between SS and SS(II) is discussed in Subsection 5.4.
The following example illustrates the big difference between TS and SS.

Numerical Example. Let Z = [-16, -12, -8, -4,0 , 4, 8, 12,16]. We compare TS and
SS in the computation of Ak (Z) for k = 1, 2,... , 8. Results are summarized in Table
(2.4.4.1). The values in the last two columns are the magnitude of the relative error
in the corresponding divided differences; notice the enormous error in the first few
A&k(Z) for TS.

8Here y - (Z) = max,I,- (, ,)/nI is the "radius" of Z (after it has beenl shifted).
9Here [x] denotes the greatest integer less than x.

512 A. McCURDY, K. C. NG AND B. N. PARLETT

TABLE (2.4.4.1)

Divided differences on Z, TS vs SS.

correct values TS SS relative relative
to 6 digits op: 645 (+ or *) op: 1018 error (SS) error (TS)

AX .150792e - 05 .281912e - 01 .150792e - 05 .12e - 06 .4
&2 .101027e - 04 .281155e - 03 .101027e - 04 .20e - 06 .83

3
1 .451239e - 04 .242131e - 03 .451239e - 04 .36e - 06 .37

A & .151160e - 03 .154376e - 03 .151160e - 03 .60e - 06 .21e - 01

& 1 .405094e - 03 .405302e - 03 .405095e - 03 .88e - 06 .5le - 03
46 .904679e - 03 .904669e - 03 .904680e - 03 .12e - 05 .le - 04
A 1 .173175e - 02 .173175e - 02 .173176e - 02 .14e - 05 .48e - 05
&8 .290059e - 02 .290059e - 02 .290059e - 02 .17e - 05 .73e - 06

3. Hybrid Methods.
3.1. Example. Our discussion so far suggests that it may be possible to compute A

accurately by combining the two methods (SR and SS) of Section 2. Let us consider
the following task:

"Given Z = [50i, 10-5 + 50i, -105 - 50i, -50i], compute A = A exp."

In addition to SR and SS, we can compute A by the following "mixed" method.
Decompose A into a 2 x 2 block matrix and name the blocks I, II and III,

AOl AXl A21 A21

A=3 A'3 [XJ'

Since tj and t2 are close together (also 3 and t4), SS is right for them and we use SS
to compute I and II. Then we use SR to fill up III.

In order to compare this mixed approach with SS and SR, we ran these three
algorithms in 24-binary digit (- 7 decimal) arithmetic. The results are summarized
in the following table. For simplicity we only compare A2 and A3. The symbol y in
the last column stands for the multiplication or division; thus 6p, 4 exp means six
multiplication/divisions and four calls to exp are needed.

Method A2 A3 1 Op. count

SR (-.262260e - 02 -.970843e - 02) (-.193573e - 03 -.558794e - 10) 6,u, 4exp
SS (-.262376e - 02 -.970219e - 02) (-.194077e - 03 -.295204e - 07) 196u, 10 exp

Mixed (-.262376e - 02 -.970218e - 02) (-.194043e - 03 .207219e - 09) 26,u, 10 exp
Exact (-.262376d - 02 -.970218d - 02) (-.194043d - 03 .204162d - 09)

The following should be noticed:
(1) SR gives poor results on A2 and A&.

(2) The answers of SS are not bad. This shows that SS can indeed accept
moderately spread data, but the price is high.

(3) The mixed method gives the most accurate answer.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 513

3.2. Simple Hybrid Method. The example in Subsection 3.1 shows that when one
can group the data into clusters (allow overlap)

Z = R '25 .. * i' 'kl ..* l' * 1l+l . * n]

I II III

then one can compute A(Z) by

< SR)

FIGURE 3.2.1

This clustering should satisfy
(1) within each diagonal block of Z, the data are close enough together so that SS

may be used for the corresponding block in A,
(2) data belonging to different blocks should be sufficiently separated so that SR

can be used to fill up the rest of A.
This mixed approach, which we call the simple hybrid method (SH), demands a

suitable ordering on the data Z. Such an ordering brings together all close abscissae
and we may call it a nested ordering (to be defined precisely in Subsection 3.3).
Under a nested ordering, the radius10 of each [Ii, i+1'... I .iI kI is close to the
distance between the endpoints. In other words, if di and ti+ k are close together, then
all ti', i+l1... -i+k are close together. In that case, we can group the abscissae as
follows. The data ti, i?+, .. i+k will be in the same cluster if I i+k - jI is less than
some value g. This g depends on k (the number of points in the data set) only and
we will discuss the value of g = gk for each k in Subsection 4.4. For the time being,
assume gk is given; we are ready to describe the simple hybrid method.

Method SH.
[1] Determine the clustering.
[2] Compute the clustered block (shaded area of Figure 3.2.1) by SS. Notice that

we only need SS to return the first row and the last column of each block.
[3] Fill up the rest to the first row by SR.

l?The radius of Z is defined to be -y(Z) = max, _,j_,ji - iqj where i1 = (Y i)/n.

514 A. McCURDY, K. C. NG AND B. N. PARLETT

In practice, [1], [2], and [3] are always combined for each cluster. Here is an
implementation.

Algorithm SH (Simple Hybrid Algorithm). Given Z and the decision function G,
this algorithm computes [d(1),...,d(n)]:= [s,& . &... n -,A1] by the simple hy-
brid method. In what follows, vector s will store the last column of the current
cluster; vector d will store the first row of the current cluster; ,u will be the currently
computed row number (of A); and v, j will be the first and last index of the next
cluster.

SH1. [n = 1?] If yes, set d(1) = exp(g,) and the algorithm terminates.
SH2. [Initialize.] Set ,u = mini<n{i: 1i - QI < gn-i} and compute the ,uth row of

A by calling SS; result goes in d(,u),. . . ,d(n). Setj = n.
SH3. [,u = 1?] If yes, the algorithm terminates.
SH4. [Loop.]

SH4.1. [Find the next cluster.] Find cluster [v, j], v < j.

(a)j =j- 1
(b) v = min{i: tj - 'jj < gj-i with i < j}
(c) if ,u < v then go back to (a) else SH4.2.

SH4.2. [Update d from v to j.]
SH4.2.1. [call SS on [h,. . ., j

Results go to d(v),. . . ,d(j) and s(1),. . . ,s(j - v + 1)
s is the last column of the cluster.

SH4.2.2. [Fill up d(j + 1),... ,d(n) by SR.]

For k = ,u - v, ,u - v - 1 ... ,1 do
d(j) = s(k)
for i =j + 1,j + 2,...,n do

d(i) = [d(i) - d(i -1)]/[t~ - +k-1]5
next i

next k

SH5. [Update [L.] Set ,u = v andj = j- 1. Go back to SH3. D

Operation Count and Storage. The total number of operations depends on the
clustering. The worst case might take 0(n3) but it would be very rare, e.g., if
Z = [1,2,3,... , 2n] and gj = n for any j, then there will be exactly n clusters and
each cluster has n data points, which means n- 0(n2) = 0(n3) operations are
needed (cf. Figure 3.2.2). Such a situation is very unlikely to happen for a realistic
set of gk, k = 1, 2,.... For our decision constants (which will be discussed later), the
operator count is usually O(n2). Storage requirements will be the same as SS.

3.3. Ordering Problem. When Z is not nested, one may not be able to group the
data to have properties (1) and (2) in Subsection 3.2. In that case, a much more
sophisticated combination of SS and SR, a recursive hybrid method, may be needed.
Let us consider a different example Z = [-50,50, 50, -50]. Since the first and the last
elements are equal, we cannot use SR for A31 and hence the whole of Z should be
treated as one block. But then SS is not that suitable because the radius of Z is large.
However, instead of the whole Z, we consider the subset [-50, 50,50] (which can be
grouped into two clusters) and obtain the first three divided differences A l, AX, A2.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 515

FIGuFE~ 3.2.2

As for the last one, we make use of the fact that it does not depend on the ordering
of Z, and thus compute A3 by considering the reordered data set [-50, -50, 50, 50].
Notice that both [-50, 50, 50] and [-50, -50, 50, 50] can be clustered for SH.

The disadvantage of the above method is that in some sense the first three divided
differences have been computed twice. Had we known in advance that the reordering
would be necessary, we could have avoided the repetition; for in our application the
abscissae ~j can be arranged in any order to give a Z but then it is A(Z) which must be

computed. It thus raises the question:
Does there exist a nested ordering for any given Z?

The answer is yes when Z is real (the natural increasing ordering) but not always in

general, e.g., consider data that form a circle in the complex plane.

X .

* 0

* 0

* 0

Data that form a circle in the complex plane
cannot be nested.

Before we discuss the details of the recursive hybrid methods, we mention the
decision function G and the decision constants gk, k = 1, 2,. .Given any abscissae
W with k points, G(W) yields a pair of points (&,i, wj), wi, wj E- W such that

loi - ojl is an approximation of the radius of W. As in Subsection 3.2, the decision
whether we should apply SS on the whole of WV becomes the test IV'i -

WjI 1<gk

where gk depends on k. Examples for G (W) =(wA,, w,), oA, Co, e W are
(3.3. 1) I ; - w,I= diam(W).
(3.3.2) Re (w,k - o,,) = diam(Re(W)).

(3.3.3)Iowt - =j max,, 2A.wE Wlwi - W1, A {wi e W: Re(coj)=
max1 Re((oj)}

We will discuss G in Sections 4 and 5. Now assume that G is given and use it to
define a nested ordering:

Definition 3.3.4. Z is nested (with respect to G) if

G([~j, ~i?19... g~i?kI) = (Gi?k ~) for any 1 < i, I < kg i ? k s< n. E

516 A. McCURDY, K. C. NG AND B. N. PARLETT

It is easy to verify that if G is one of (3.3.1)-(3.3.3), and if Z is real, then an
arrangement of tj in increasing order gives a nested ordering.

3.4. Recursive Hybrid Method. Every divided difference can be computed by

Ak = RH(. .) where the function RH is defined below.
Recursive Function RH(Z). This function computes the highest order divided

difference on the given data Z. Let k denote the number of points in Z, then RH
return A'k- 1(Z) exp.

[1] If k = 1 return (exp(?,)).
[2] Compute G(Z) = (t, t,).
[3] If <- v' gk call SS and return (d(k)) else return the following

(3.4.1) RH(Z(11))
- RH(Z(v))

where Z(i) [2 i-1' i?l ,-] C

We leave the details of the proof that RH does return the highest divided
difference to the reader. Notice that when Z is nested, G([ji ti+kI) = (?i+k i)

and the above decision (step [3]) means that Ak [+i] should be computed by
SS if I i+k - iI < gkI which is exactly what SH did. Thus

RH reduces to SH if the abscissae are nested. r1
Since the operation count of RH could be enormous, like 0(2n), one would hope

to find a nested ordering for the tj's to determine Z and then apply SH on it. A
practical modification is to attempt to nest the abscissae (according to G) before
steps [2] and [3]. If it can be done, then SH can be applied to the rearranged Z
(recall that the divided difference does not depend on the ordering of the data).
Later on we will see that the abscissae can always be taken close to real (cf.
Subsection 5.3) and consequently ordering according to the real part gives an almost
nested ordering, see Subsection 5.4.

Our purpose in introducing RH is to show that, in principle, A'k(Z) exp can be
computed accurately using fixed precision arithmetic.

4. Real Exponential Divided Differences. Exponential divided differences for real
abscissae are positive and increasing functions of their abscissae. These properties
permit derivation of bounds on the error growth in SR (Standard Recurrence) and
SS (Scaling and Squaring). For future use, we consider the more general function
exp, with scaling parameter , that is expT(O)= eT. For simplicity, we write

exp(n)(t) =d

In the rest of this section, we consider exclusively divided differences on real
abscissae X = [R , 42.. *] even if some of the properties hold for general
complex abscissae.

4.1. Basic Theorems and Properties.
Translation and Scaling Invariance Property. Let U be the constant vector

[1, 1,. .. , 1]. Then for any constants T, a,

(4.1.1) vAn-1(X + aU) exp = eta . nl(X) exp

and

(4.1.2) An-1(X) exp = rn-1Anl1(rX) exp.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 517

Proof. (4.1.1) follows easily from the matrix equation exp(A + aI) = e' - exp(A)
(using (1.5.3)), and (4.1.2) follows from (1.3.1) directly.

Recursive Integral Formula. For given X and any T >, 0, i = 1,2,... , n, we have

(4.1.3) 4-1 expT = e e-. * exp du,
0

where

(4.1.4) Lx(i)2f _ n-2(X(i))f, X(i)= X\{M }I

Proof. From the Hermite-Genocchi integral representation formula (1.3.1), we
have

Anl171exp7 = J| J *. J

A 1 e jXjPT 2.
exp[T [?(~l +42 -)v1 +? +(en - nn-J]n-I dvn-l ... dvl

1 Pi , n v- 2

Tn- exp [T41 +(42 -1) TP, + ***+ ((n - l) JTVn -jl dpn ...** d Vl

by the definition of expT. The change of variables aj = P-j for =1, 2,...,n-1
yields the alternative expression

(4.1.5) &n -1exp = J J1 *.
n-2

exp [Ttj + (42- 0 Jl + *+ (en n- l) an -ldn ... du.

We recognize that this is a recurrence for 4n - 1 exp, namely

An-1 exp -
eTtlJ e-at1 .* - 2 expa da

0

where a a,. By the symmetry property (1.2.1), the ordering of the abscissae is
arbitrary; we may replace (j by any (j, 1 < i < n, hence establishing the formula. Ol

THEOREM 1. For all T > 0 and k > 0, &k exp7 is
(i) positive.

(ii) strictly increasing in each abscissa (, for i = 1, . . ., n.

Proof. (i) follows from the mean value representation (1.4.1). For (ii),

n8 n -2 a A 1 expT = (T - a)e(fA(i) exp(da > 0,

since the integrand is positive.

THEOREM 2. Suppose f8 < j < -y for each abscissa (j, 1 < i < n. Then for each i
there exists a e [E/3, y] such that

(4.1.6) +i)exp7 = n-
l + -)e

Proof. By (4.1.1) and (4.1.2),

n71(T(X X- {U)) exp = T e
-

n X)p

T i(n-)eT(r-)j e-' .A(l)2(X)expGdu

518 A. McCURDY, K. C. NG AND B. N. PARLETT

for any i = 1, 2,.. , n and (. Differentiating with respect to T yields

d &n-l-1(T(X X- U)) exp dT

(4.1.7) dTA (U [- 2(X)eXp +
- i(n1)T[(i -n-lnX) ex 2(X) exp]

Every element of the vector X - 13U is nonnegative, and so An -(T(X -T /XU)) exp
is increasing in T. Similarly, every element of X - yU is nonpositive and
Anl (T (X - yU)) exp is decreasing in . Hence

d An- 1(T(X - 1U))exp > 0 >+ dA n-1(T(X- yU))exp

so for some t E [,/, y], the derivative is zero. The result then follows from (4.1.7). E

COROLLARY 1. Lower bound on An- 1 exp. If > (ifor each i = 1,2,... ,n, then

(4.1.8) A 1 exp > n- 1 AnF2exp.

Proof. Choose i = n, Y = n in (4.1.6), and note that -(n 1< ? 0?

COROLLARY 2. Upper bound on An- 1 expr. If ,< (I for each i = 1, 2,.. ,n, then

(4.1.9) A 71exp < n An2exp- . ?

4.2. Error Growth in Standard Recurrence. We now examine the error growth of
one step of SR when X is in increasing order. Equation (4.1.8) leads directly to a
bound on the relative error growth in one step of SR. Let ek be the relative error in
A/k = Ak exp, i.e., fl(Ak) = (1 + E k) _ Ak, where fl(Ak) is computed by SR. For
simplicity, let us first assume that the recurrence step (2.1.1) is done exactly, in
which case e, may be regarded as the inherited uncertainty Of Ak. We have

fl(4M/c) =fl('kj-1) -fl(&kA1) (1 + ek -1')'Qkj -(1 + k-1)&k 1

After some algebraic manipulation, one obtains

Ifl(,Akj) - AkcA < [^k + i+kk . max{Ice1+'I,
l

Ick I}

By (4.1.8), since (i+k > 1j for i < j < i + k.

Iekl _ 1fl(I) il < [1 + t e] max{ lek 1;,, leI 1}.

Therefore, we have
Uncertainty growth" of one step of SR (with X an increasing order)

(4.2.1) ej [1 +
k _] maxt Ic,4'I, 1>l11. E]

This bound is quite realistic. Take the example in Subsection 2.1: Z = [1, 1.00011.
Both 4,& = el andA&? = el-owl can be computed accurately with IEOI, IEOI < E, so Eq.

'This is the growth of the uncertainties in the data. As long as there are uncertainties in the input, SR
will propagate them even if the arithmetic of each step is done exactly.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 519

(4.2.1) predicts le11 < 20001c. In Subsection 2.1, with E = 5 10-8, we have c1 =

(2.719 - 2.7184 ...)/(2.718 ... 0.0002142 = 4284E.
In finite arithmetic, the execution of SR may introduce some roundoff error to

Ak'. An error analysis in Appendix B of [8] shows that only a small modification of
(4.2.1) is needed to incorporate the effects of roundoff into the propagation of
uncertainty.

Error Growth of One Step of SR. Provided that k-1 and Elk+ are small,12 we have

(4.2.2) [4E + [+]max{

Proof. See Appendix B of [8]. 0
4.3. Error Bounds on SS. Based on the positivity of A&k (Theorem 1 in 4.1), we can

apply standard error analysis to obtain relative error bounds on SS. For example, in
the squaring step, each entry of the matrix is positive and therefore no cancellation
occurs and we have for each F

Ifl(F2) - F21 < n E *F2

where IE I denotes the matrix all of whose elements are the absolute values of the
elements of E and our notation A < B means that al j < bi,, for every i andj.

A detailed error analysis of Algorithm SS(11) is presented in Appendix B of [8]. As
a direct corollary of Eq. (B.6) in [8], we have the following bound:

Scaling and Squaring Error Bounds. Given real abscissae X in increasing order,
denote the relative error of AJ1(X) by EJ as in the previous section, and recall

y-maxjIjj - - where -q is the arithmetic mean of (i. For convenience set y'
max(y, 0.7). We have

(4.3.1) i , (Cok + C,klny + C2y - 2) E
where CO = 13.68 and C1 = 1.4427. C2 depends on E; in particular, C2 = 134.4 when
E = 2 , and C2 = 215.426 when = 2-

Proof. See Appendix B of [8]. U

Remark. The bound on -k is quite pessimistic. Numerical results show that most of
the time the constants Ci should be reduced to 0.01 times their values given above
(cf. the remark in Appendix B of [8]).

4.4. Decision Criteria for the Hybrid Methods. Using the bounds in the previous
section we demonstrate that one can determine G and gi so that the recursive
function RH (for the highest divided difference) always yields a result with bounded
error. For convenience, we write x()- X to indicate that X has n abscissae. The
function RH(X(n)) is:

(1) RH(X(1)) = exp(t,).
(2) Compute G(X ") - (t, (),where (-maxi (and (minm, .

(3) If J(- ^I < gn-I call SS(11) and RH(X(n)):= (d(1, n)) else

(4.4.1) RH(X(n)):= RH(X(,7)1)) - RH(X(Zg-l))

where IX (-29 * * *i-11 (i'+1 * . . 9U-

12See Appendix B of [8] for details. In general, it suffices to require them < - (1 + 2kljD,+k - ,J)-.

520 A. McCURDY, K. C. NG AND B. N. PARLETY

Based on the bounds (4.3.1) and (4.2.2), we are going to show by induction that

THEOREM. For a given precision 8, there exist some constants gj and ?(j), where
j = 1, 2, ... such that for any n and x(n) the relative error

18i2 I = flJ7(RH(X(n))) - (X) <(n-1)

It can be shown that ?(k) = 0(k2) * as k -x oc (see Remark 1).

Proof. Step 0. When n = 1, AO (X) = RH(X) = exp((,). Therefore 8(0) can be set

equal to - (we assume function exp can be evaluated accurately, i.e., IE? I < 4).
Step 1. When n = 2, assume 4, < 42, then G(X) = (42, 41). Let , = 22 - 1 To

compute RH(X), SR yields (cf. 4.2.2)

(4.4.2) I1El < 4E +(1 + 4/a) -8(0) < (5 + 4/i&)E

and SS yields (cf. 4.3.1)

(4.4.3) I?I < [2Co + 2C1 log y' + C2y' - 2] 8

Since y' max(y, 0.7) < max(,&, 0.7) (4.4.3) becomes

(4.4.4) 141 < [2 Co + 2 C1 log(max(i&, 0.7)) + C2 (max(,&, 0.7)) - 2]

Notice that the bound in (4.4.2) is monotonic decreasing in , and the one in (4.4.4)
is monotonic nondecreasing so they have only one intersection. Let it occur at
4 = gl. It means that 81 will always be bounded by -(1) (5 + 4/g1)8 if one

computes RH(X) by SS when G(X) < g1 and SR (i.e., by (4.4.1)) otherwise.
Step 2. Assume that for 1 < n the assertion is true, i.e., 81E, in RH(X(")) is

bounded by some constant -(n-1) for any X = X(n). Consider X = X(n+). Let &
denote It - H,, where G(XX(n+l) - (1) s). To compute RH(X), SR, or Eq. (4.4.1)
yields

(4.4.5) I8 nl < 48 + (1 + 2n/i?)

and SS yields

(4.4.6) ?l,n < [nCo + nC, log(max(i9, 0.7)) + C2(max(,&, 0.7)) - 2] * .

Again the bound in (4.4.5) is monotonic decreasing on & and (4.4.6) is monotonic
nondecreasing on &, so they have only one intersection and let it occur at ' = gn.

Therefore 8j2 will always be bounded by - = 48 + (1 + 2n/gn-1) . "-1) if one

computes RH(X) by SS when 1t, - (< g, and by (4.4.1) otherwise.
By induction, our assertion is true for all n. O
One can generate those g., ?(j) recursively by equating the bounds in (4.4.5) and

(4.4.6) and solve it forj = 1, 2,... with the initial value ?(0) = 8:

(4.4.7a) 48 + (1 + 2 j7i) . -
)

= [jco + jC1 log(max(i9, 0.7)) + C2 (max(,&, 0.7)) - 2]

with

(4.4.7b) j(= [jCo ?jC, log(max(i9, 0.7)) + C2 (max(,&, 0.7)) - 2] 8 E.

For 8 = 2-24, we compute some of the gj and ?(j) according to (4.4.7) and list them
in Table (4.4.8). Therefore, we have shown

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 521

COROLLARY. When ? = 2 24, we have

(4.4.8) j fl(RH(X(n))) -_ n-1(x(n)) (n(f -1))

where the values of g. for RH and the values of (5)/8) are given in Table (4.4.8). D

TABLE (4.4.8)

Single precision decision criteria (E = 2- 24) and
error bounds for the hybrid algorithm.

Error bound digits lost

X EX (l? og 1 0(() /0))

1 0.02 0.105e + 03 2.02
2 2.100 0.310e + 03 2.49
3 4.846 0.697e + 03 2.84
4 9.227 0.131e + 04 3.12
5 15.41 0.216e + 04 3.33

6 23.48 0.326e + 04 3.51
7 33.50 0.463e + 04 3.67
8 45.48 0.626e + 04 3.80
9 59.46 0.816e + 04 3.91
10 75.42 0.103e + 05 4.01

20 345.4 0.469e + 05 4.67
40 1487. 0.201e + 06 5.30
60 3430. 0.462e + 06 5.67
80 6173. 0.832e + 06 5.92
100 9716. 0.131e + 07 6.12

Remark 1. The asymptotic value of g, is i2 + 0(i), as can be seen from the
equation ?(k) = C2 gk * ? and C2 gk + 1 = (1 + 2 klgk + 1) * C2 gk obtained by omitting
the lower order terms in (4.4.7). One can verify by induction that k2 - 3k < gk< k2

and consequently the error bound ?(k) = (C2k2 + 0(k))E.
Remark 2. Although the error bounds in Table (4.4.8) are not ridiculous, they are

quite pessimistic. Also, the value of gj in the above table is too large to be useful.
For example, when n = 20, g20 = 345.4 and it means that A&20 is computed by
(-129 _ AX19)/(M21 -) only if (21 -1 > 345.4! Experience shows that as long as

?n + - (j > 25 or 26, SR always yields satisfactory answers. Since SR is much faster
than SS, one prefers SR to SS whenever SR yields satisfactory results. So we would
like a set of values for g. and ?J) which is more realistic. After numerous numerical
experiments we obtained the following experimental formula for g. and ?(J) (for any
precision E).

Experimental Formula.

(4.4.9) gj (1? 0 l (j) =5gj?

The practical value for g. is much smaller than the one in Table (4.4.8)-it is like
j + 0.1j ln j versus j2. For comparison, takej = 40, (4.4.9) yields 54.76 while (4.4.8)
yields 1487! We ran our SH (with g. in (4.4.9)) on a Z that has 20 data points
distributed irregularly from -27 to 25. The results are summarized in Table (4.4.10).
The last column "digit lost" is logr0 (relative error). It is most satisfactory.

522 A. McCURDY, K. C. NG AND B. N. PARLETJ

TABLE (4.4.10)

Test example for Simple Hybrid Method.

Correct A'-'SH digits
to 7 digits I lost

1 -27.0 0.1879529e - 11 0.1879529e - 11 0.
2 -26.0 0.3229560e- 11 0.3229560e - 11 0.
3 -15.0 0.2317134e - 08 0.2317134e - 08 0.09
4 -14.0 0.3012897e - 08 0.3012897e - 08 0.
5 -12.0 0.2983682e - 08 0.2983682e - 08 0.
6 -10.0 0.2246401e - 08 0.2246401e - 08 0.
7 -8.0 0.1353474e - 08 0.1353474e - 08 0.50
8 -7.9 0.4257157e - 09 0.4257158e - 09 0.56
9 -7.8 0.9465834e- 10 0.9465836e - 10 0.61

10 -2.7 0.4272183e - 10 0.4272186e - 10 0.96
11 1.0 0.2364207e- 10 0.2364209e - 10 1.10
12 1.1 0.6378568e- 11 0.6378574e - 11 1.22
13 1.2 0.1208801e - 11 0.1208802e - 11 1.33
14 1.3 0.1806541e- 12 0.1806544e - 12 1.45
15 3.0 0.2706591e- 13 0.2706596e - 13 1.49
16 7.0 0.5415335e- 14 0.5415346e - 14 1.53
17 9.0 0.1022545e- 14 0.1022547e - 14 1.58
18 13.0 0.2453144e- 15 0.2453151e - 15 1.65
19 24.0 0.3804000e- 15 0.3803999e - 15 0.72
20 25.0 0.1456325e- 15 0.1456325e - 15 0.54

5. Complex Exponential Divided Differences.
5.1. Can we Have High Relative Accuracy? As we have seen in Section 4, the real

exponential divided differences can be computed with high relative accuracy. What
makes it possible is that Ak.(X) = Ak (X) exp is positive for real X. This property
fails for complex data Z, for Ak (Z) can take on any complex value. However, one
can still say something about the error in Ajk(Z). In order to do that some extra
notation is needed. Let X and Y be the real and imaginary part of Z, i.e., if
Z = [11 2 , U,] then X = 11 21 . ,] and Y = ['q1, 2l . . n] so that 'k = (k

+ iL1k for k = 1, 2,... , n. Also let Ak.(W) denote the exponential divided differences
on the abscissae W. Our treatment of error in the complex case is based on the
following inequality.

LEMMA. With the notation given above

(5 .1 .1) lo~~1,ki (Z) I < ki(X).-

Proof. Use the Hermite-Genocchi expression (1.3.1) for Ak (Z) and note that

iexp[ti + ('i+l - 01)v1 + ***] = exp[j + (j+-)V1 + * * *

Inequality (5.1.1) enables us to bound the error in the computed Ak'(Z) in terms of
Ak'(X). The bounds are similar to those in Section 4. We summarize the results
below, and leave the details to Appendix B in [8]. Let ? be the unit roundoff and e k

be the absolute error of Ak (Z), i.e., fl(Ak (Z)) = Ak (Z) + eik. Define - k, the pseudo
relative error in Ak (Z), to be ?ik-e klAk (X)

(1) Error Growth of SR (Standard Recurrence). Suppose that Ak (Z) is computed
by SR, and also Re(-I?k) >? Re(Z.) for i 1< < i + k. Then, to first order in ?, the

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 523

pseudo relative error -k satisfies:

(5.1.2) I< 4e + [1 + I 2k
2

] rmax{ 147111, |e, I 1}. ?

Proof. See Appendix B of [8]. 0
(2) Error Bounds of SS (Scaling and Squaring). Let the radius y be defined as in

Subsection 2.4. Suppose that A(Z) is computed by SS(II). Then to first order in E we
have

Error bound

(5.1.3) I Co < [Cok + C,k ln(max(-y, 0.7)) + C2 - max(y, 0.7) - 2]

where Ci, i= 0, 1, 2 take the same values as in (4.3.2).
Proof. See Appendix B (Corollary (B.6)) of [8]. E
The above bounds for complex abscissae Z are similar to those for the real ones in

Section 4, except that the meaning of the error E' is different: here ? is the error in
tk.(Z) relative to Ak(X). The same analysis as in Subsection 4.4 shows that the

hybrid methods yield small ek like O(k2)e, i.e., yields Ak'(Z) with small absolute
error compared to 4k(X), provided that the decision function G satisfies:

(1) G(Z) =(,t)and 14, - ^j = -Y,
(2) Re(,) > Re(t1) for any Dj E Z.

It leads to the definition (3.3.4) for G, i.e., G(Z) (t, D) such that

(5.1.4) j1 - , = max Dj - Djj where A _ (E Z: Re(Dj) = max Re(D);.

?,Z

For this G, we always have 2G(Z) > y(Z) (usually G(Z) > -y(Z) except in some
rare situations). Therefore, with the above G, we have

(3) Error Bound of RH(X). There exist constants gj for the RH and constants ?(j),
j = 1,2,... such that for any X = X(k),

|?k| < 8(k-1)

Proof. The proof is similar to the one in Subsection 4.4. E
If one assumes G(Z) > y, then when ? = 2-24, the values of gi are the same as

those in Table (4.4.8).
Remark. In the implementation of the hybrid methods, one can avoid using RH in

the real case because one can always order the data so as to be nested. In the
complex case there may not exist such an ordering and RH seems unavoidable in
order to secure good relative accuracy in the most general case (e.g., 500 points on a
circle of radius 500 in the complex plane). However, in Subsection 5.3 we will show
how to salvage SH when the data are complex.

5.2. Computational Difficulty. Let X, Y and Z be as defined in 5.1. The error bound
for RH(X) in Subsection 5.1 implies that if we compute A',-'(Z) in RH in finite
precision arithmetic (with precision e) then the relative error in fl(4Vn -I (Z)) will be
bounded by

(5.2.1) Ifl(A&n-1(Z)) - An-l1(Z) | | I (X)

(5.2.1__ ___ __ ___ __ ___ __
(Z

)____I . ~(n-l

524 A. McCURDY, K. C. NG AND B. N. PARLETT

where E(k) s C2k2e (see Remark 1 of Subsection 4.4). Let p denote the coefficient of
(n-l) i.e., p = p(Z) A&nl-(X)/tA1n1-(Z)t. When p >> 1, (5.2.1) implies that it is

difficult to obtain Ak(Z) with high relative accuracy. This difficulty is intrinsic to
the RH method. One way to overcome it is to increase the precision of the arithmetic
operations and of the variables. Another possible approach is to find special
formulae which build up Ak(Z) from even tinier quantities, e.g., FDD, the formula
for AII exp given in Subsection 2.2. Unfortunately for n > 2, we do not know if any
such formulae exist.

We call p(Z) the difficulty of Z for computing the exponential divided difference
An- 1(Z). It indicates whether An'-1(Z) can be computed with high relative accu-
racy. If p (Z) is large then we call the data Z difficult for the computation of
A n-I (Z).

We have used the word difficulty instead of the common term condition number
for several good reasons. By tradition, a condition number should measure the
sensitivity of an output to small perturbations in the input. Our quantity p is merely
a bound on the most accurate method we have for computing An4- I(Z) exp. More
important is the fact that we want to compute these numbers with a small relative
error, not absolute. Z is difficult precisely when the number we wish to compute is
close to zero. Indeed this number may not be sensitive (absolutely) to small changes
in Z.

From (5.1.1), we always have p > 1. In general, p does not have an upper bound"3
(e.g., p([O, 2,ri]) = ox). However, when Z is real, p = 1. Also Z is not difficult if all
its elements are close to the real axis.

THEOREM. Given Z =n([n,...,D, let -j= Im ,j =1,.. .,n. If maxI'q1 <y<
7T/2, then

p(Z) < sec(y).

Proof. Our proof follows from the following mean value representation of Ak (Z):
there exist real tL, v with min1<l<1?k m , v maxj<l<j?k m such that

(5.2.2) Ak (Z) Ak (Z) (COS(v) + i sin(p)).

From the identity exp(t + i-) = exp(()(cos(q) + i sin(q)) and the Hermite-Genoc-
chi representation (1.3.1), we have

ztk(Z) = fI ... fk1 exp[, + ..* + (-j+k 1J?+k-1) k]

X Cos[J + + -j+k ?+k-1) k] dVk
...

dV2 dV1

+ f f . f exp[e, + + (-j+k J?+k-1)vk]

X [sin(1j +
-(_+k "j+k-l)pk] dvk . dv2 dv.

Since exp is positive on real values, Eq. (5.2.2) follows from the integral mean value
theorem applied to each part. Now with the condition maxjlqjl < y < r/2, (5.2.2)

13We conjecture that if the imaginary parts of the data are restricted in (0, 27r), then any divided
difference A k, never vanishes (and hence p A oo). It can be proved for k = 1; but we do not know any
proof when k is bigger than 1.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 525

gives a lower bound for lAk.(Z) :

(5.2.3) |^JZ|>cos(y) .,&k.(X) > 0.

The theorem follows from the definition of p. E
Note that when jIm(tj)l < 0.4577, i = 1,...,n, then p < 6.41. Examples of

difficult Z are: those abscissae close to [0, 27i, 4?i,.. ., 2k?ri] (any divided difference
on these abscissae vanishes, i.e., p = oo). A surprising example is Z = [0, i, 2.04254
+ 7.97730i]. For this Z, we computed 4(Z) with approximately 7 decimal precision
and give the corresponding p in the table below. Notice that SS lost 6 digits in the
last divided difference, which has p z 10 6.

TABLE 5.2.3
Divided differences on Z = [0, i, 2.04254 + 7.97730i].

Correct values SS P
to 3 digits

AI1 (0.841 0.460) (0.841 0.460) 1.05

AL (-0.144e - 06 -0.731e - 07) (-0.161e - 06 -0.800e - 07) 7.14eO6

Remark 1. In application to the matrix exponential the need for high relative
accuracy in A'.(Z) decreases with lAk(Z)l. When it is satisfactory to compare the
error in 1A&k(Z)I with Ak (X) then the difficulty evaporates.

Remark 2. In general p(Z) increases with the spread of the imaginary parts. For
example,

, 1([Re(tJ), Re('2)]) 1- - 21 leRe(t,) _ eRe(t2)I

IA11([(I1 2]) I lRe(tj - '2)1 Je(G1) - e(2)j

lRe(~j - 02)I

So the bigger the difference of the imaginary parts the larger is the difficulty. As a
point of interest we also compute the difficulties on circles with various radii and
number of points. The results are summarized in the following table. Each entry is
the difficulty of abscissae distributed uniformly on a circle with radius y.

TABLE 5.2.4
Difficulty of circles for the highest divided difference.

y=_5 _y_=_10__ y=15 y=20 y=25

n= 5 2.2 3.1 3.2 3.2 3.2
n = 10 1.7 7.9 28.9 35.9 45.1
n= 15 1.5 4.5 25.0 173.6 301.7
n= 20 1.3 3.2 12.6 77.5 651.8

5.3. Ordering and Matrix Argument Reduction. A nested ordering may not exist for
general complex data Z. However, if the imaginary parts of the data are bounded by

7T, then one can order the data according to their real parts and get an almost nested
ordering. In this section, which is based on the period 2 vi of exp, we indicate briefly
a way to transform the data to values that have bounded imaginary parts. We refer
the reader to Ng [9] for details.

526 A. McCURDY, K. C. NG AND B. N. PARLETT

Definition of The Reduction Function Mod(A). Since exp has period 2Ti the strip
-7T < Im(D) < 'T is representative. Let us define the argument reduction function
for exp as follows:

Mod(D) --D-2kii if (2k - 1)iT < Im(D) < (2k + 1) XT.

We have exp(') = exp(Mod(')). Now we are going to extend the function Mod to
matrices. Let J be the Jordan normal form of A, i.e., A = P-1JP, and J =

diag(Jil,. . . ,J;1) where Jm is the Jordan block with diagonal equal to eigenvalue Xm of
A. Let km be the integer such that

(2km - 1) < Im(Xm) < (2km + 1) ?T.

Define
(1) Mod(Jm) Jm - 2km,TiI;
(2) Mod(J) diag(Mod(Jil),... , Mod(J1));
(3) Mod(A) P-' Mod(J)P.
It is not difficult to prove that exp(A) = exp(Mod(A)) according to (1), (2), and

(3). Thus Mod generalizes argument reduction to matrices and yields a matrix that
has eigenvalues with bounded imaginary parts.

As we have mentioned in the introduction, the application behind the computa-
tion of A&k .exp is matrix exponentials. If one applies the matrix argument reduction
before computing the exponential, then all the eigenvalues of the matrix would have
bounded imaginary parts, thus solving the ordering problem in the computation of
the divided differences.

Remark 1. There is another way to reduce the imaginary parts of the data: since
A exp = exp(Zn), we may apply argument reduction directly on Zn and compute
exp(Mod(Zn)). However, the bidiagonal structure of Zn will be destroyed by the
reduction and therefore some modifications of the algorithm TS are needed. The
work for the whole compuatation increases significantly.

Remark 2. For the computation of Mod(A), there is a stable method which avoids
using the Jordan decomposition of a matrix. When A is triangular the work needed
is approximately n3/3 operations which is quite practical. An algorithm for argu-
ment reduction can be found in Ng [9].

5.4. Conclusion: SH for Data With Restricted Imaginary Parts. Although RH gives
the divided differences with guaranteed accuracy, it is impractical to implement it
unless the order of the divided differences is very small like 3 or 4, because the
number of operations grows like 2". Subsection 5.3 shows that (assuming one has the
matrix function Mod(A)) one can consider matrices with eigenvalues close to the
real line, so there is no loss of generality in considering Z with imaginary parts
bounded by T. There are two advantages to small imaginary parts. The first is that
we can order the abscissae according to their real parts and obtain an almost nested
ordering (according to the G defined in Subsection 5.1). Thus one can apply SH
(Simple Hybrid method) instead of RH (Recursive Hybrid function). The second is
that the backfilling step in SS is stable, which implies that one can replace SS(II) by
SS with very slight sacrifice in accuracy. But the trade-off is significant, since SS
takes O(n2) operations and requires only a few vectors for storage while SS(II) take
O(n3) and requires a matrix storage. We conclude this section by proposing the
following.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 527

Computation of A(Z). Given Z with Re(Z) in increasing order and Ilm(Z)I < a.
Use algorithm SH with the following G to compute A(Z).

Decision Function G for SH on Z. The function G on Z = [n,.. . ,n] is defined to
be G(Z) = (Dn ti)D14 and the decision is, for i < j,

t,, Dj belong to the same cluster if Re(j -) < g1-

where the values of g,, / = 1, 2,.. ., can be those in (4.4.9). O
Numerical Results. We ran the SH algorithm on Z that has the same real parts as

in (4.4.10) but with the imaginary parts = +? . The results are summarized in the
following table.

TABLE (5.4.1)

Test example for SH on complex data, A n (Z) exp.

n |n
Correct values

SH digi
to 7 digits SHlosi

1 -27.0 + 7ii (-0.1879529d - 11 -0.1643136d - 18) (-0.1879529e - 11 -0.1643136e - 18) 0.
2 -26.0 - 7ii (-0.7978484d - 13 -0.5013023d - 12) (-0.7978483e - 13 -0.5013023e - 12) 0.
3 -15.0 + 7ii (-0.1747305d - 08 0.9981036d - 09) (-0.1747305e - 08 0.9981036e - 09) 0.
4 -14.0 - si (0.4155101d - 09 -0.4757347d - 09) (0.4155102e - 09 -0.4757347e - 09) 0.
5 -12.0 + 7ii (0.1814275d - 09 0.1323147d - 08) (0.1814274e - 09 0.1323147e - 08) 0.43
6 -10 - si (0.7591439d - 09 -0.5204460d - 09) (0.7591440e - 09 -0.5204460e - 09) 0.32
7 -8.0 + si (0.4204520d - 09 0.5119519d - 09) (0.4204520e - 09 0.5119519e - 09) 0.
8 -7.9 - si (0.2091884d - 09 -0.3885102d - 10) (0.2091884e - 09 -0.3885013e - 10) 0.20
9 -7.8 + si (0.4721783d - 10 0.2416627d - 10) (0.4721784e - 10 0.2416627e - 10) 0.48

10 -2.7 - si (0.2229288d - 10 -0.1255209d - 10) (0.2229289e - 10 -0.1255209e - 10) 0.90
11 1.0 + 71i (0.1147709d - 10 0.8703504d - 11) (0.1147709e - 10 0.8703510e - 11) 0.99
12 1.1 - si (0.3820952d - 11 -0.7453152d - 12) (0.3820956e - 11 -0.7453158e - 12) 1.18
13 1.2 + -7i (0.7360573d - 12 0.2693091d - 12) (0.7360580e - 12 0.2693094e - 12) 1.25
14 1.3 - si (0.1204098d - 12 -0.1441720d - 13) (0.1204099e - 12 -0.1441722e - 13) 1.29
15 3.0 + -7i (0.1798853d - 13 0.5672050d - 14) (0.1798856e - 13 0.5672058e - 14) 1.42
16 7.0 - si (0.3734263d - 14 -0.8906243d - 15) (0.3734269e - 14 -0.8906257e - 15) 1.43
17 9.0 + si (0.7041432d - 15 0.2104887d - 15) (0.7041446e - 15 0.2104891e - 15) 1.51
18 13.0 - si (0.1705491d - 15 -0.5255464d - 16) (0.1705495e - 15 -0.5255475e - 16) 1.51
19 24.0 + si (0.1783471d - 15 0.2243819d - 15) (0.1783471e - 15 0.2243819e - 15) 0.27
20 25.0 - si (0.9540051d - 16 -0.1855942d - 16) (0.9540053e - 16 -0.1855942e - 16) 0.60

6. Application to Computing Matrix Exponentials.
6.1. Repesentation of f (A) by the Newton Interpolating Polynomial. Let A be n X n

and let f be any scalar function with at least n continuous derivatives at the
eigenvalues t1,.. , gn of A. Associated with f is the unique polynomial of degree
n - 1 which interpolates f at the Dj. A convenient representation of this polynomial
was given by Newton,

n-1 k

Pn l(t) =f(J) + E Akf H 11 (t -)

k=1 j=1

Here Ak f denotes the k th order divided difference of f at the abscissae k1, .. k

A fundamental result in matrix theory is that

(6.1.1) f(A) = pn-(A).

14For such Z and G, one can show that 2(G(Z) + v) > -y(Z).

528 A. McCURDY, K. C. NG AND B. N. PARLETT

That is,
Newton Interpolating Polynomial of f(A).

n-1 k

(6.1.2) f(A) = z f. I + E zk f * H (A -jI).
k=1 j=1

In our applications, A is in triangular form. Therefore the eigenvalues are just the
diagonal elements of the matrix and the matrix products can be formed efficiently.

6.2. Matrix Exponentials. Let A be triangular. Since exp is periodic on the
imaginary axis with period 27T, we can use argument reduction in marix form (cf.
Subsection 5.4) on A, replace A by another triangular A' such that exp(A) = exp(A')
and IIm(a1i)J < 7T. There is no loss of generality in assuming that argument
reduction has been done and therefore the imaginary parts of the eigenvalues of A
are bounded. Now we can apply SH on the eigenvalues to obtain the divided
differences and compute exp(A) by (6.1.2).

Department of Mathematics
University of California
Berkeley, California 94720

1. K. E. ATKINSON, An Introduction to Numerical Analysis, Wiley, New York, 1978.
2. S. D. CONTE AND C. DE BOOR, Elementary Numerical Analysis, 3rd ed., McGraw-Hill, New York,

1980.
3. C. DAVIS, "Explicit functional calculus," Linear Algebra Appl., v. 6, 1973, pp. 193-199.
4. G. F. GABEL, A Predictor-Corrector Method Using Divided Differences, Technical Report No. 5,

Dept. of Computer Science, Univ. of Toronto, Oct. 1968.
5. A. 0. GEL'FAND, Calculus of Finite Differences, Hindustan, India, 1971.
6. W. KAHAN & I. FARKAS, "Algorithm 167-Calculation of confluent divided differences," Comm.

ACM, v. 6, 1963, pp. 164-165.
7. A. C. McCuRDY, Accurate Computation of Divided Differences, UCB/ERL M80/28, Univ. of

California, Berkeley, 1980.
8. A. McCuRDY, K. C. NG & B. N. PARLETT, Accurate Computation of Divided Differences of the

Exponential Function, CPAM-160, Univ. of California, Berkeley, June 1983.
9. K. C. NG, The Computation of the Matrix Exponential, Thesis, Univ. of California, Berkeley,

December 1983.
10. G. OPITZ, "Steigungsmatrizen," Z. Angew. Math. Mech., v. 44, 1964, pp. T52-T54.
11. B. N. PARLETT, "A recurrence among the elements of functions.of triangular matrices," Linear

Algebra Appl., v. 14, 1976, pp. 117-121.
12. R. C. WARD, "Numerical computation of the matrix exponential with accuracy estimate," SIAM J.

Numer. Anal., v. 14, 1977, pp. 600-610.
13. L. M. MILNE-THOMSON, The Calculus of Finite Differences, Macmillan, London, 1933.

